Classification of human motion based on affective state descriptors

نویسندگان

  • Gökçen Çimen
  • Hacer Ilhan
  • Tolga K. Çapin
  • Hasmet Gürçay
چکیده

Human body movements and postures carry emotion-specific information. On the basis of this motivation, the objective of this study is to analyze this information in the spatial and temporal structure of the motion capture data and extract features that are indicative of certain emotions in terms of affective state descriptors. Our contribution comprises identifying the directly or indirectly related descriptors to emotion classification in human motion and conducting a comprehensive analysis of these descriptors (features) that fall into three different categories: posture descriptors, dynamic descriptors, and frequency-based descriptors in order to measure their performance with respect to predicting the affective state of an input motion. The classification results demonstrate that no single category is sufficient by itself; the best prediction performance is achieved when all categories are combined. Copyright © 2013 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Emotion Recognition Approach based on Wavelet Transform and Second-Order Difference Plot of ECG

Emotion, as a psychophysiological state, plays an important role in human communications and daily life. Emotion studies related to the physiological signals are recently the subject of many researches. In This study a hybrid feature based approach was proposed to examine affective states. To this effect, Electrocardiogram (ECG) signals of 47 students were recorded using pictorial emotion elici...

متن کامل

بازشناسی خودکار حالت عاطفی مبتنی بر تغییرات فیزیولوژیک

Recently, automatic affective state recognition has been noteworthy for improving Human Computer Interaction (HCI), clinical researches and other various applications. Little attention has been paid so far to physiological signals for affective state recognition compared to audio-visual methods. Different affective states stimulate the Autonomic Nervous System (ANS) and lead to changes in physi...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Long-short Term Motion Feature for Action Classification and Retrieval

We propose a method for representing motion information for video classification and retrieval. We improve upon local descriptor based methods that have been among the most popular and successful models for representing videos. The desired local descriptors need to satisfy two requirements: 1) to be representative, 2) to be discriminative. Therefore, they need to occur frequently enough in the ...

متن کامل

University of Amsterdam at THUMOS 2015

This notebook paper describes our approach for the action classification task of the THUMOS 2015 benchmark challenge. We use two types of representations to capture motion and appearance. For a local motion description we employ HOG, HOF and MBH features, computed along the improved dense trajectories. The motion features are encoded into a fixed-length representation using Fisher vectors. For ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Visualization and Computer Animation

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2013